Liberate your data

Intelligence is all about knowledge. This website is dedicated sharing expertise on Oracle BI. More »


Patch Set Update for Oracle Hyperion Financial Reporting

Hyperion Product Management have advised the release of a Patch Set Update (PSU) for Oracle Hyperion Financial Reporting

This PSU is available from the My Oracle Support | Patches & Updates section.

Hyperion Financial Reporting PSU
Patch 24311587

This is a patch set update (PSU). This patch set update is a partial installation. It replaces files in the existing installation, and does not require a full installation. This patch set update is cumulative and does include fixes from previous patches.

The PSU can be applied to Financial Reporting (FR) releases:

  • (PSU 20785710)
  • (PSU 21479554)
  • (PSU 22018419)
  • (PSU 22462544)
  • (PSU 23009997)
  • (PSU 23557946)

Prerequisites - Required Microsoft Patch - Microsoft has identified a security issue that could allow a hacker to compromise your Windows-based system. You MUST install the Microsoft VC 2005 SP1 ATL redistributable pack before applying this patch. The updated VC 2005 redistributable is available here for both x86 (32-bit) and x64 (64-bit).

Ensure to review the Readme file prior proceeding with this PSU implementation for important information that includes prerequisites, details for applying patch, troubleshooting FAQ's and additional support information.

The Readme file is available from the Patches & Updates download screen.

Share your experience about installing this patch ...

In the MOS | Patches & Updates screen for Oracle Hyperion FR Patch 24311587, click the "Start a Discussion" or "Reply to Discussion" and submit your review.

The patch install reviews and other patch related information is available within the My Oracle Support Communities. Visit the Oracle Hyperion EPM sub-space:

Hyperion Patch Reviews

For questions specific to Hyperion Financial Reporting ...

The My Oracle Support Community "Hyperion Reporting Products" is the ideal first stop to seek & find product specific answers:

Hyperion Reporting Products

OBIEE12c – Upgrading to Version


The new version of OBIEE 12c, to be exact, is out, so let’s talk about it. It’s my intent that after reading this, you can expect some degree of comfort in regards to possibly doing this thing yourself (should you find yourself in just such a circumstance), but if not, feel free to drop us a line or give us a ring. It should be noted that Oracle documentation explicitly indicates that you’re going to need to upgrade to OBIEE version, which is to say you’re going to have to bring your 11g instance up to 12c before you can proceed with another upgrade. A colleague here at RM and I recently sat down to give the upgrade process (click there for the Oracle doc) a go on one of our hosted windows servers, and here’s the cut and dry of it. The examples throughout will be referencing both Linux and Windows, so choose how you’d like. Now, if you’ve gone through the 12c install process before, you’ll be plenty familiar with roughly 80% of the steps involved in the upgrade. Just to get this out of the way, no, it’s not a patch (in the sense that you’re actually going through the OBIEE patching process using OPatch). In fact, the process almost exactly mirrors a basic 12c install, with the addition of a few steps that I will make darn sure we cover in their entirety below. Speaking of which, I’m not going to do a play-by-play of the whole thing, but simply highlight those steps that are wholly unfamiliar. To provide some context, let’s go through the bullet points of what we’ll actually be doing during the upgrade.

  1. First, we’ll make sure we have a server appropriate, supported version of java installed (8_77 is the lowest version) and that this guy corresponds to the JAVA_HOME you’ve got set up.

  2. Next, we’ll be running the install for the WebLogic server into a NEW oracle home. That’s right, you heard me. A. new. oracle. home.

  3. After that, we’ll be running a readiness check to make sure our OBIEE bits won’t run into any trouble during the actual upgrade process. This checks all OBIEE components, including those schemas you installed during the initial install process. Make sure to have your application database admin credentials on hand (we’ll talk about what you need below in more detail). The end of this step will actually have us upgrade all those pieces the readiness checker deems worthy of an upgrade.

  4. Next, we’ll reconfigure and upgrade our existing domain by running the RECONFIGURATION WIZARD!!!!! and upgrade assistant, respectively.

  5. Lastly, we’ll start up our services, cross our fingers, hold onto our four leaf clovers, etc.. (just kidding, at least about that last part).

Before we begin, however, let’s check off a few boxes on the ‘must have’ list.

  • Download all the files here, and make sure you get the right versions for whatever kind of server your version of OBIEE hangs out in. The java version will be 8_101 which will work out just fine even though the minimum needed is 8_77.

  • Get those database credentials! If you don’t know, drop everything and figure out how you’re going to access the application database within which the OBIEE 12c schemas were installed. You’ll need the user name/pass for the SYS user (or user with SYS privileges), and the database connection string as well, including the service name, host, and port.

  • Make sure you have enough disk space wherever you’re installing the upgrade. The downloads for the upgrade aren’t small. You should have at least 150GB, on a DEV box, say. You don’t want to have to manage allocating additional space at a time like this, especially if it involves putting in a ticket with IT (wink wink)! Speaking of which, you’ll also need the server credentials for whichever user 12c was installed under. Note that you probably don’t need root if it was a linux machine, however there have been some instances where I’ve needed to have these handy, as there were some file permission issues that required root credentials and were causing errors during an install. You’ll also need the weblogic/obiee admin user (if you changed the name for some reason).

  • Lastly, make sure you’re at least a tad bit familiar with both the path to the oracle and to the domain home.


After downloading the version of Java you need, go ahead update it via the .rpm or .exe, etc… Make sure to update any environment variables you have set up, and to update both the JAVA_HOME variable AND the PATH to reference the new Java location. As stated above, at the time of this blog, the version we used, and that is currently available, is 8_101. During the upgrade process, we got a warning (see below) about our version not being 8_77. If this happens to you, just click Next. Everything will be alright, promise.

Java Version Warning


Did you click the link to the upgrade doc yet? If not, do so now, as things are about to get kind of crazy. Follow along as we walk through the next steps if you’d like. First, stop services and disable the SSL like it tells you to. Then, start OBIEE services back up and then run the infrastructure jar (java -jar fmw_12. for the WebLogic server install. Again, I’m not going to go pic by pic here as you can assume most everything resembles the initial 12c install process, and this part is no different. The one piece of this puzzle we need to focus on is establishing a new oracle home. After skipping those auto updates, move onto step 3 where we are, in fact, going to designate a new oracle home. You’ll see that, after completing the WebLogic install, we’ll have a bunch of updated feature sets, in addition to some new directories in our oracle home. For example, if your original home is something like:


change it to:

New Oracle Home

when it asks you to enter a new one.

Breeze through the rest of the steps here, and remember to save that response file!


Unzip both of the files, making sure that your OBIEE install files are in the same directory. For windows, this will be the executable from the first zip file, and the zip file from the second part of disk 1. Execute the binary (on linux) or .exe, going through the usual motions and then in step 3, enter the NEW oracle home for In the example above, it would be:


for Linux, and likewise, for Windows:

Enter Existing Oracle Home

Again, there isn’t too much to note or trap you here beyond just making sure that you take special care not to enter your original oracle home, but the one you created in the previous section. Proceed through the next steps as usual and remember, save your response file!


Run the readiness checker from:

NEW_ORACLE_HOME/oracle_common/upgrade/bin/ua -readiness

This next series of steps will take you through all the schemas currently deployed on your application database and confirm that they won’t explode once you take them through the upgrade process. In step 2 of 6, make sure that you’re entering the port for EM/Console (9500 by default). Remember when I said you’re going to need the DB credentials you used to install 12c in the first place? Well here’s where we’re going to use them. The readiness checker will guide you through a bunch of screens that essentially confirms the credentials for each schema installed, and then presents a report detailing which of these will actually get upgraded. That is to say, there are some that won’t be. I really like this new utility as an extra vote of confidence for a process that can admittedly be oftentimes troublesome.

Readiness Checker

Readiness Report

Once you’ve validated that those schemas ready for update, go ahead and stop OBI12c services using the EXISTING oracle home.

Pro tip: they’ve made it super easy to do this now by just pointing your bash_profile to the binaries directory in OBIEE’s bitools folder (ORACLE_HOME/user_projects/domains/bi/bitools/bin). After logging this entry in your profile, you can simply type or to bring everything up or down, not to mention take advantage of the myriad other scripts that are in there. Don't type those paths out every time.

I digress… After the services come down, run the upgrade assistant from within the NEW oracle home, as below:

Citing the previous example:


After bringing up the install dialogue box, move on to step 2, and select the All Schemas Used by a Domain option (as in the example above), unless of course you’d like to hand select which ones you’d like to upgrade. I suppose if you were thinking about scrapping one you had previously installed, then this would be a good option for you. Make sure the domain directory you specify is from your existing/old 12c instance, as below:

Upgrade Assistant-Existing Domain

Move through the next series of steps, which are more or less self explanatory (no tricks here, promise), once again validating connection credentials until you get to step 12. As always, save the response file, select Upgrade, and then watch the magic happen,….hopefully. Congratulations, you’ve just updated your schemas!

Schema Update Protocol Complete


Like I said before, I won’t be covering every single step of this process i.e, doing the map viewer portion, which means you’ll have to still consult the…oracle, on some of this stuff. That being said, don’t gloss over backing up the map viewer have to do it. This is simply an attempt to help make the upgrade process a little easier to swallow and hopefully make some of the more confusing steps a bit clearer. Moving on. Guess what? It’s time to run another series of dialogue boxes. Beats the heck out of scripting this stuff though, I guess. Open up the RECONFIGURATION WIZARD!!!!! as instructed in the documentation, from the location within your NEW oracle home. The first step will prompt us for the location of the domain we want to upgrade. We want to upgrade our existing 12c domain (the old one). So type that in/browse for it. Right now.

Enter Existing Domain Home

Validate your java version and location in step 3 and then click your way through the next few screens, ensuring that you’ve at least given your stamp of approval on any pre-filled or manually filled entries in each dialogue box. Leave step 7 alone and click Next to get to the screen where we’re actually going to be starting the reconfiguration process. Click through and exit the RECONFIGURATION WIZARD!!!!!

Validate Java

Configuration Celebration

Don’t forget to restore the map viewer config file at this point, and then launch the configuration assistant again, this time selecting the All Configurations Used By a Domain option in step 2. Make sure you’ve entered the location of the existing 12c domain in this step as well, and NOT the one created under the new oracle home.

Enter Proper Domain

Click through the next steps, again, paying close attention to all prompts and the location for the map viewer xml file. Verify in step 7 that the directory locations referenced for both domain and oracle map viewer are for the existing locations and NOT those created by the install of the update.

Correct Location Verification Affirmation


You can now boot up ssl (as below) and then start OBIEE services.

DOMAIN_HOME/bitools/bin/ internalssl true

Note: if you have tnsadmin or ldap.ora, place copies under NEW_ORACLE_HOME/network/admin

You can ignore the new oracle home created at this time, as, in my opinion, we’re going to have to do something similar for any following updates
for 12c. What did you think of the upgrade process and did you run into any issues? Thanks so much for reading, and as always, if you find any inconsistencies or errors please let us hear about them!

Becky’s BI Apps Corner: OBIA New Features Part 1 – Health Check & ETL Diagnostics

I have been working with BI Applications since OBIA switched to ODI in version I have installed and worked with all of the 11.x versions using several different sources. This most recent version of OBIA may only be a Patch-Set release, but it has some new features that make it very compelling; ETL automatic error handling, Health Check, ETL Diagnostics, and built in Email notifications.

If you've been using earlier version of OBIA 11.x (or 7.x for that matter), now may be the time to upgrade. In an Oracle Advisor's Webcast, Rajesh Lakra, BIApps Global Product Support Lead Engineer, said this version will be the upgrade path to the OBIA 12.x, which is slated for release sometime in 2017. Also, it may just be circumstances I've been exposed to, but this latest version seems more performant as well. Since I've not had an opportunity to do benchmark time testing against the same source data, I cannot verify yet. However, I am setting up some environments to do just that. Keep an eye out for a future blog post for performance comparisons.

Load Plan

Check if there are any other running load plans

Check Previous Load Plan Runs is a package that only has the following procedure:
Check State of Previous Load Plan Runs
Load Plan
1) Checks the status of Previous Load Plan Runs. Throws Exception if any other Load Plan is still in Running state.
2) Checks Blackout schedule period from w_etl_control_schedule table. If there is a Blackout schedule then LP would fail and comes out from the execution.

I’ve not found any documentation about this package or procedure. However, the procedure itself has three steps.
Load Plan

  1. Check if Prev Load Plans are Running


    b. >>>>>" + ctLPRunning + " Load plan(s) found to be running/waiting apart from the current one. ABORTING this Load Plan as running multiple Load Plans in Parallel can cause DATA CORRUPTION <<<<<< Load Plan
    Load Plan

  2. Check Blackout schedule

    a. select -1 from w_etl_control_schedule cs where sysdate between cs.control_start_dt and cs.control_end_dt and cs.control_code = 'NO_ETL'

    b. >>>>> Blackout schedule coming up as seen in w_etl_control_schedule table, hence no Load plan(s) will be executed. ABORTING this Load Plan as there will be a down time to the repository due to the Blackout schedule <<<<<<

  3. Check Source Upgrade


    b. >>>>>Found Incomplete Source Upgrade status from the Source Upgrade tracking table (W_ETL_SRC_VERSION_HISTORY).For more information, please refer to the Warehouse table W_ETL_SRC_VERSION_HISTORY for incomplete Source Upgrade status rows and take necessary action to run Source Upgrade Load plans <<<<<<

I believe this has been a good feature to add because Oracle’s OBIA documentation has always recommended not running more than one load plan at a time. Now if there is a load plan running, automatically the load plan will stop and there will be a message warning you about data corruption if more than one load plan is running.

I think it is interesting to see this Blackout schedule and Source Upgrade. I’ve done some looking in the documentation and on but didn’t come up with any clues to what exactly these are for. It seems to me like the Blackout schedule is a calendar of sorts for when the repository will be down for maintenance. As for the Source Upgrade, that is more of a mystery to me.

Next step in the Load Plan is a Health Check.
Load Plan

Health Check and Diagnostics

Oracle's OBIA ETL Guide has a short paragraph on the Health Check.

Health Check is a preliminary ETL phase in which a diagnostic report is generated to identify problematic source data that might cause ETL failure or data loss or corruption in the data warehouse. The report is downloaded from Configuration Manager and includes any problematic data, a description of detected issues, and actions to resolve health check failures.

Referring again to Oracle's OBIA ETL Guide, the Manage Load Plans page is where you can download the Health Check. Highlight the relevant load plan that has run and/or failed and click on Show Data Problems

Load Plan

Select the desired DIAGNOSTIC HEALTHCHECK and download the zip file to your computer.

This file gets generated through a number of different steps starting with the Execute Healthcheck package and followed by the Create Report and Summarize Healthcheck package.

Execute Healthcheck is a package that only has the following procedure:
Run Diagnostics
Load Plan
This procedure has 12 steps. The two that are the most interesting are:
Define Execute Diagnostic Function and Run Diagnostics Load Plan

The bulk of the code for the Diagnostics are in the step Define Execute Diagnostic Function. The code is Jython and it is really too long to paste here, but I highly recommend digging into how it works.
Load Plan

Then the step Run Diagnostics actually kicks off the process as shown here.
Load Plan

Once the diagnostics are run, there is a step in the load plan called Create Report and Summarize Healthcheck. This package has two procedures.
Load Plan

The first procedure, Create Diagnostic Report does exactly what you might guess. It does a lot of formatting and puts the diagnostic report into an html page.
Load Plan
The second procedure, Summarize Healthcheck Result, takes the information, inserts it into a table, then organizes it for an email to be sent out.
Load Plan
Load Plan

During the September 21st Oracle Advisor Webcast on BI Applications New Release Overview, Rajesh Lakra, BIApps Global Product Support Lead Engineer, said the Health Check is most useful during a domain load. It checks to ensure source domain data is valid, collectively letting you know if these domains will cause issues further down in the ETL process.

In Part 2 of OBIA New Features, I will show you what the html files look like, how to setup the email process, and how the automatic error handling is now working within many of the knowledge modules. Tune in next time for more exciting parts of the new features in this version of BI Applications!

Analysing Social Media Data for the Lightyear Foundation – Part 2

In my last post, I described the basics around connecting to social media data sources using Python. This is in aid of collating information for the Lightyear Foundation, a charity specialising in science education in the UK and Ghana. In this blog, I will demonstrate how to use those integrations to record data into a PostgreSQL database. I've chosen this database in so as to keep everything free and open source.

One of the downsides with some of the publicly available APIs is that they only store a certain amount of history. These makes analysing long term trends a bit more difficult. By recording the data periodically, in an ETL-like fashion, we can circumvent this. Given the vast amount of data available for social media it would not be appropriate to store all of the data in a relational database. Instead, we can store summary statistics for long term trend analysis.

All of the code used in this blog is on this public Git repository. You are welcome to download this and poke around as you follow the blog. Note that there is configuration in config.ini and a keys/google-api.json file required in order to get these working yourself.

Database Integration

The Python module psycopg2 was used to execute transactions against the PostgreSQL database with Python. The script lyf/psql.sql contains a host of functions I wrote to perform useful database and ETL actions.

  • psql.truncate : Truncates a table.
  • psql.insert : Inserts a single row to a table.
  • psql.upsert : Updates a row to a table if a matching key is found, else inserts the row.
  • psql.update : Updates values in a table based on matching keys.
  • psql.delete : Deletes rows from a table based on a WHERE clause.
  • psql.lookup : Updates columns based on a lookup to another table. Useful for assigning foreign keys from natural keys.
  • psql.load_csv : Loads data from a CSV file into a table, mapping header names in the file to columns in the table.
  • psql.query : Executes a SQL statement and returns the data.

Google Analytics

For Google Analytics (GA), there is availability of many dimensions and metrics but I have chosen merely a useful subset to put into a star schema.


For efficiency, I wrote a method to dynamically load dimension tables from a tsv file.

table    ga_dims columns keys  
d_ga_source    "ga:sourceMedium,ga:source,ga:medium,ga:socialNetwork"  "source_medium,source,medium,social_network"    "source_medium"  
d_ga_platform    "ga:operatingSystem,ga:deviceCategory,ga:operatingSystemVersion"    "os,device_category,os_version" "os,device_category,os_version"  
d_ga_geo    "ga:continent,ga:subContinent,ga:country,ga:countryIsoCode,ga:region,ga:cityId,ga:city" "continent,sub_continent,country,country_code,region,city_id,city"  "city_id"  
d_ga_page    "ga:pageTitle"  "page_title"    "page_title"  

The column table refers to the table name in the PostgreSQL schema, which are created manually before executing the script. ga_dims is a comma separated list of GA dimension codes. Note that this is an upper limit of 7 dimensions allowed for a GA API query. columns is another list of equal length describing the mapping to the columns in the database table. Finally keys is a comma separated list of which columns are unique natural keys for the database table. This is so the script can perform updates as well as inserts.

This input file is parsed by which executes a Google API query for each dimension and upserts the records into the database. Essentially, the ETL for this process is defined quite simply by the TSV file and can be changed with relative ease. It doesn't have the scope, flexibility or scale as ODI or Informatica, but for a quick, free version it will suffice.


The fact table is much simpler to load as we just need to execute a single GA query which specifies only the dimension natural keys and the metrics. The script will go and fetch the dimension warehouse key (always integer) as well as any metrics specified in the file. I've opted for:

  • Sessions
  • Bounces
  • Bounce Rate
  • Average Session Duration
  • Session Duration
  • Page Views
  • Time on Page

Finally there is an integer date ID and some denormalised attributes: Longitude and Latitude. With Google its easy to retrieve a "full load" as the API allows querying of history as well as incremental loads which filtered for today's date. Below is an example query returning the total session time and number of sessions by continent for Jan 2016:

    sum(session_duration) as total_time, 
    sum(ga.sessions) as sessions
    f_ga_daily ga
    inner join d_ga_geo geo on geo.geo_id = ga.geo_id
    inner join d_date dt on dt.date_id = ga.date_id
where dt.yyyymm = 201601  
group by dt.year_month, geo.continent  
order by dt.year_month;  

Sessions by Continent


The extract I wrote for Facebook was much simpler, using date as the sole dimension. If required, dimension tables could be created for posts and videos or other similar data, but in this case we just want to look at trends over time. The measures selected are:

  • Total Likes
  • Total Posts
  • Total Videos
  • Total Video Likes
  • New Posts
  • New Videos
  • Impressions
  • Reach
  • Engaged Users
  • New Likes
  • New Unlikes
  • Video Views
  • Page Views
  • Post Likes

There's no way of extracting history data from Facebook's API, so we need to load data regularly using Below is a time series query of likes and reach for a few days:

    sum(total_likes) total_likes,
    sum(new_likes) likes, 
    sum(engaged_users) engaged_users,
    sum(reach) reach from
f_facebook_daily fb inner join d_date dt on dt.date_id = fb.date_id  
group by date  
order by 1;  

Time Series - Facebook


The Twitter API is not as rich as the Google or Facebook APIs and is limited to only 15 queries an hour. For my ETL scripts this shouldn't matter, but once again no history is available. The script for this load is The measures we've got are:

  • Total Followers
  • Total Following
  • Total Tweets
  • Followers
  • Following
  • Tweets
    sum(total_followers) total_followers,
    sum(total_following) total_following, 
    sum(total_tweets) total_tweets,
    sum(tweets) tweets from
f_twitter_daily tw inner join d_date dt on dt.date_id = tw.date_id  
group by date  
order by 1;  

Time Series - Twitter


The data for videos and views over time are stored in a flatten fact table. Given the small number of attributes for videos and the lack of interconnectivity with the other information, I just denormalised on them onto the fact table. For measures we have:

  • Total Views
  • Views
  • Total Likes
  • Likes
  • Total Dislikes
  • Dislikes

Once again this is loaded incrementally, storing records for each video for each day. The incremental loading script is The below query shows how many views the videos got by month:

    sum(yt.views) views
    f_youtube_daily yt
    inner join d_date dt on dt.date_id = yt.date_id
group by dt.year_month  
order by 1, 2;  

Video Views By Month


The MailChimp API allows extraction of information about subscriber lists and campaigns. will load in today's fact data as well as updating the subscriber list dimension. The measures include:

  • Members
  • Unsubscribed
  • Cleaned
  • Total Members
  • Total Unsubscribed
  • Total Cleaned
  • Total Campaigns
  • Open Rate
  • Average Subscribe Rate

Below is an example query showing a snapshot of the subscriber list data as of 9th September 2016.

    sum(mc.total_members) total_members,
    sum(mc.total_campaigns) total_compaigns,
    avg(mc.open_rate) open_rate
    f_mc_lists_daily mc
    inner join d_date dt on dt.date_id = mc.date_id
    inner join d_mc_lists ml on ml.list_id = mc.list_id
where date = '2016-09-09'  
group by,  
order by 1, 2;  

Subscriber List Snapshot


Now we've got all these different facts, we can write BI style summary queries to compare all of the data, or provide regular reports. This is a query across multiple fact tables conforming on the date dimension. It shows summary statistics for each fact per month.

ga as  
    select dt.year_month, sum(ga.sessions) as sessions, avg(ga.avg_session_duration) as avg_session_duration
        f_ga_daily ga
        inner join d_date dt on dt.date_id = ga.date_id
    where dt.year = 2016
    group by dt.year_month
    order by 1
fb as  
    select dt.year_month, last(total_likes) as total_likes, sum(fb.reach) as reach
        f_facebook_daily fb
        inner join d_date dt on dt.date_id = fb.date_id
    where dt.year = 2016
    group by dt.year_month
    order by 1
tw as  
    select dt.year_month, last(total_followers) as total_followers
    from f_twitter_daily tw
    inner join d_date dt on dt.date_id = tw.date_id
    where dt.year = 2016
    group by dt.year_month
    order by 1
yt as  
    select dt.year_month, sum(views) as views, last(total_views) as total_views
        f_youtube_daily yt
        inner join d_date dt on dt.date_id = yt.date_id
    where dt.year = 2016
    group by dt.year_month
    order by 1
ga.year_month, ga.sessions as web_views, ga.avg_session_duration as avg_web_view_dur, fb.reach as fb_reach,  
fb.total_likes as fb_likes, tw.total_followers as twitter_followers, yt.total_views as total_yt_views, yt.views as yt_views  
    inner join fb on ga.year_month = fb.year_month
    inner join tw on ga.year_month = tw.year_month
    inner join yt on ga.year_month = yt.year_month;


So there we have it, a open-sourced ETL package for a handful of social media sites that will track history. The final tables can be used as a source for any reporting tools you want, and the data can all be tied together by date. This is particularly useful for showing summary trends over time. However, I don't store even a fraction of the amount of data that we can get in real time from the APIs. The next blog entry will show how to use open source technologies to visualise this data as well as the real time information.

Oracle Data Relationship Management is available

Patch Set Update (PSU) for Oracle Hyperion Data Relationship Management has been released.

This PSU is available from the My Oracle Support | Patches & Updates section.

Oracle Hyperion DRM PSU
Patch 24448186

This Patch Set Update (PSU) requires a full installation. This patch can be installed on a new machine or replace an existing installation.

If this patch will replace an existing installation, related components such as Hyperion Foundation Services are not affected.  However, upgrading from a release prior to will require an upgrade of Foundation Services to

This is the tenth patch on the release.

The Readme file should be reviewed prior to proceeding with this PSU implementation for important information that includes a full list of the defects fixed, along with additional support information, prerequisites and details for applying patch.

It is important to ensure that the requirements and support paths to this patch are met as outlined within the Readme file. The Readme file is available from the Patches & Updates download screen.

The patch install reviews and other patch related information can viewed within the My Oracle Support Communities. Visit the Oracle Hyperion EPM sub-space:

Hyperion Patch Reviews

For other Oracle Data Relationship Management questions and assistance visit the My Oracle Support Community:

HPCM, HSF, DRM & Other Products