Tag Archives: Oracle Big Data Appliance
Rittman Mead and Oracle Big Data Appliance
Over the past couple of years Rittman Mead have been broadening our skills and competencies out from core OBIEE, ODI and Oracle data warehousing into the new “emerging” analytic platforms: R and database advanced analytics, Hadoop, cloud and clustered/distributed systems. As we talked about in the recent series of updated Oracle Information Management Reference Architecture blog posts and my initial look at the Oracle Big Data SQL product, our customers are increasingly looking to complement their core Oracle analytics platform with ones to handle unstructured and big data, and as technologists we’re always interesting in what else we can use to help our customers get more insight out of their (total) dataset.
An area we’ve particularly focused on over the past year has been Hadoop and R analysis, with the recent announcement of our partnering with Cloudera and the recruitment of a big data and advanced analytics team operating our of our Brighton, UK office. We’ve also started to work on a number of projects and proof of concepts with customers in the UK and Europe, working mainly with core Oracle BI, DW and ETL customers looking to make their first move into Hadoop and big data. The usual pattern of engagement is for us to engage with some business users looking to analyse a dataset hitherto too large or too unstructured to load into their Oracle data warehouse, or where they recognise the need for more advanced analytics tools such as R, MapReduce and Spark but need some help getting started. Most often we put together a PoC Hadoop cluster for them using virtualization technology on existing hardware they own, allowing them to get started quickly and with no initial licensing outlay, with our preferred Hadoop distribution being Cloudera CDH, the same Hadoop distribution that comes on the Oracle Big Data Appliance. Projects then typically move on to Hadoop running directly on physical hardware, in a couple of cases Oracle’s Big Data Appliance, usually in conjunction with Oracle Database, Oracle Exadata and Oracle Exalytics for reporting.
One such project started off by the customer wanting to analyse a dataset that was too large for the space available in their Oracle database and that they couldn’t easily process or analyse using the SQL-based tools they usually used; in addition, like most large organisations, database and hardware provisioning took a long time and they needed to get the project moving quickly. We came in and quickly put together a virtualised Hadoop cluster together for them, on re-purposed hardware and using the free (Standard) edition of Cloudera CDH4, and then used the trial version of Oracle Big Data Connectors along with SFTP transfers to get data into the cluster and then analysed.
The PoC itself then ran for just over a month with the bulk of the analysis being done using Oracle R Advanced Analytics for Hadoop, an extension to R that allows you to use Hive tables as a data source and create MapReduce jobs from within R itself; the output from the exercise was a series of specific-answer-to-specific-question R graphs that solved an immediate problem for the client, and showed the value of further investment in the technology and our services – the screenshot below shows a typical ORAAH session, in this case analyzing the flight delays dataset that you can also find on the Exalytics server and in smaller form in OBIEE 11g’s SampleApp dataset.
That project has now moved onto a larger phase of work with Oracle Big Data Appliance used as the Hadoop platform rather than VMs, and Cloudera Hadoop upgraded from the free, unsupported Standard version to Cloudera Enterprise. The VMs in fact worked pretty well and had the advantage that they could be quickly spun-up and housed temporarily on an existing server, but were restricted by the RAM that we could assign to each VM – 2GB initially, quickly upgraded to 8GB per VM, and the fact that they were sharing CPU and IO resources. Big Data Appliance, by contrast, has 64GB or RAM per node – something that’s increasingly important now in-memory tools like Impala are begin used – and has InfiniBand networking between the nodes as well as fast network connections out to the wider network, something thats often overlooked when speccing up a Hadoop system.
The support setup for the BDA is pretty good as well; from a sysadmin perspective there’s a lights-out ILOM console for low-level administration, as well as plugins for Oracle Enterprise Manager 12c (screenshot below), and Oracle support the whole package, typically handling the hardware support themselves and delegating to Cloudera for more Hadoop-specific queries. I’ve raised several SRs on client support contracts since starting work on BDAs, and I’ve not had any problem with questions not being answered or buck-passing between Oracle and Cloudera.
One thing that’s been interesting is the amount of actual work that you need to do with the Big Data Appliance beyond the actual installation and initial configuration by Oracle to “on-board” it into the typical enterprise environment. BDAs are left with customers in a fully-working state, but like Exalytics and Exadata though, initial install and configuration is just the start, and you’ve then got to integrate the platform in with your corporate systems and get developers on-boarded onto the platform. Tasks we’ve typically provided assistance with on projects like these include:
- Configuring Cloudera Manager and Hue to connect to the corporate LDAP directory, and working with their security team to create LDAP groups for developer and administrative access that we then used to restrict and control access to these tools
- Configuring other tools such as RStudio Server so that developers can be more productive on the platform
- Putting in place an HDFS directory structure to support incoming data loads and data archiving, as well as directories to hold the output datasets from the analysis work we’re doing – all within the POSIX security setup that HDFS currently uses which limits us to just granting owner, group and world permissions on directories
- Working with the client’s infrastructure team on things like alerting, troubleshooting and setting up backup and recovery – something that’s surprisingly tricky in the Hadoop world as Cloudera’s backup tools only backup from Hadoop-to-Hadoop, and by definition your Hadoop system is going to hold a lot of data, the volume of which your current backup tools aren’t going to easily handle
Once things are set up though you’ve got a pretty comprehensive platform that can be expanded up from the initial six nodes our customers’ systems typically start with to the full eighteen node cluster, and can use tools such as ODI to do data loading and movement, Spark and MapReduce to process and analyse data, and Hive, Impala and Pig to provide end-user access. The diagram below shows a typical future-state architecture we propose for clients on this initial BDA “starter config” where we’ve moved up to CDH5.x, with Spark and YARN generally used as the processing framework and with additional products such as MongoDB used for document-type storage and analysis:
Something that’s turned out to be more of an issue on projects than I’d originally anticipated is complying with corporate security policies. By definition, most customers who buy an Oracle Big Data Appliance and going to be large customers with an existing Oracle database estate, and if they deal with the public they’re going to have pretty strict security and privacy rules you’ll need to adhere to. Something that’s surprising therefore to most customers new to Hadoop is how insecure or at least easily compromised the average Hadoop cluster is, with Hadoop FS shell security relying on trusted networks and incoming user connections and interfaces such as ODBC not checking passwords at all.
Hadoop and the BDA only becomes what’s termed “secure” when you link it to a Kerebos server, but not every customer has Kerebos set up and unless you enable this feature right at the start when you set up the BDA, it’s a fairly involved task to add retrospectively. Moreover, customers are used to fine-grained access control to their data, a single security model over their data and a good understanding in their heads as to how security works on their database, whereas Hadoop is still a collection of fairly-loosely coupled components with pretty primitive access controls, and no easy way to delete or redact data, for example, when a particular country’s privacy laws in-theory mandate this.
Like everything there’s a solution if you’re creative enough, with tools such as Apache Sentry providing role-based access control over Hive and Impala tables, alternative storage tools like HBase that permit read, write, update and delete operations on data rather than just HDFS’s insert and (table or partition-level) delete, and tools like Cloudera Navigator and BDA features like Oracle Audit Vault that provide administrators with some sort of oversight as to who’s accessing what data and when. As I mentioned in my blog post a couple of weeks ago, Oracle’s Big Data SQL product addresses this requirement pretty well, potentially allowing us to apply Oracle security over both relational, and Hadoop, datasets, but for now we’re working within current CDH4 capabilities and planning on introducing Apache Sentry for role-based access control to Hive and Impala in the coming weeks. We’re also looking at implementing Cloudera’s “secure gateway” cluster topology with all access restricted to just a single gateway Hadoop node, and the cluster itself firewalled-off with external access to just that gateway node and HTTP / REST API access to the various cluster services, for example as shown in the diagram below:
My main focus on Hadoop projects has been on the overall Hadoop system architecture, and interacting with the client’s infrastructure and security teams to help them adopt the BDA and take over its maintenance. From the analysis side, it’s been equally as interesting, with a number of projects using tools such as R, Oracle R Advanced Analytics for Hadoop and core Hive/MapReduce for data analysis, Flume, Java and Python for data ingestion and processing, and most recently OBIEE11g for publishing the results out to a wider audience. Following the development model that we outlined in the second post in our updated Information Management Reference Architecture blog series, we typically split delivery of each project’s output into two distinct phases; a discovery phase, typically done using RStudio and Oracle R Advanced Analytics for Hadoop, where we explore and start understanding the dataset, presenting initial findings to the business and using their feedback and direction to inform the second phase; and a second, commercial exploitation phase where we use the discovery phases’ outputs and models to drive a more structured dimensional model with output begin in the form of OBIEE analyses and dashboards.
We looked at several options for providing the datasets for OBIEE to query, with our initial idea being to connect OBIEE directly to Hive and Impala and let the users query the data in-place, directly on the Hadoop cluster, with an architecture like the one in the diagram below:
In fact this turned out to not be possible, as whilst OBIEE 11.1.1.7 can access Apache Hive datasources, it currently only ships with HiveServer1 ODBC support, and no support for Cloudera Impala, which means we need to wait for a subsequent release of OBIEE11g to be able to report against the ODBC interfaces provided by CDH4 and CDH5 on the BDA (although ironically, you can get HiveServer2 and Impala working on OBIEE 11.1.1.7 on Windows, though this platform isn’t officially supported by Oracle for Hadoop access, only Linux). Whichever way though, it soon became apparent that even if we could get Hive and Impala access working, in reality it made more sense to use Hadoop as the data ingestion and processing platform – providing access to data analysts at this point if they wanted access to the raw datasets – but with the output of this then being loaded into an Oracle Exadata database, either via Sqoop or via Oracle Loader for Hadoop and ideally orchestrated by Oracle Data Integrator 12c, and users then querying these Oracle tables rather than the Hive and Impala ones on the BDA, as shown in the diagram below.
In-practice, Oracle SQL is far more complete and expressive than HiveQL and Impala SQL and it makes more sense to use Oracle as the query platform for the vast majority of users, with data analysts and data scientists still able to access the raw data on Hadoop using tools like Hive, R and (when we move to CDH5) Spark.
The final thing that’s been interesting about working on Hadoop and Big Data Appliance projects is that 80% of it, in my opinion, is just the same as working on large enterprise data warehouse projects, with 20% being “the magic”. A large portion of your time is spent on analysing and setting up feeds into the system, just in this case you use tools like Flume instead of GoldenGate (though GoldenGate can also load into HDFS and Hive, something that’s useful for transactional database data sources vs. Flume’s focus on file and server log data sources). Another big part of the work is data processing, ingestion, reformatting and combining, again skills an ETL developer would have (though there’s much more reliance, at this point, on command-line tools and Unix utilities, albeit with a place for tools like ODI once you get to the set-based filtering, joining and aggregating phase). In most cases, the output of your analysis and processing will be Hive and Impala tables so that results can be analysed using tools such as OBIEE, and you therefore need skills in areas such as dimensional modelling, business analysis and dashboard prototyping as well as tool-specific skills such as OBIEE RPD development.
Where the “magic” happens, of course, is the data preparation and analysis that you do once the data is loaded, quite intensively and interactively in the discovery phase and then in the form of MapReduce and Spark jobs, Sqoop loads and Oozie workflows once you know what you’re after and need to process the data into something more tabular for tools like OBIEE to access. We’re building up a team competent in techniques such as large-scale data analysis, data visualisation, statistical analysis, text classification and sentiment analysis, and use of NoSQL and JSON-type data sources, which combined with our core BI, DW and ETL teams allows us to cover the project from end-to-end. It’s still relatively early days but we’re encouraged by the response from our project customers so far, and – to be honest – the quality of the Oracle big data products and the Cloudera platform they’re based around – and we’re looking forward to helping other Oracle customers get the most out of their adoption of these new technologies.
If you’re an Oracle customer looking to make their first move into the worlds of Hadoop, big data and advanced analytics techniques, feel free to drop me an email at mark.rittman@rittmanmead.com for some initial advice and guidance – the fact we come from an Oracle-centric background as well typically makes it easier for us to relate these new concepts to the ones you’re typically more familiar with. Similarly, if you’re about to bring on-board an Oracle Big Data Appliance system and want to know how best to integrate it in with your existing Oracle BI, DW, data integration and systems management estate, get in contact and I’d be happy to share experiences and our delivery approach.
Why Oracle Big Data SQL Potentially Solves a Big Issue with Hadoop Security
Oracle announced their Big Data SQL product a couple of weeks ago, which effectively extends Exadata’s query-offloading to Hadoop data sources. I covered the launch a few days afterwards, focusing on how it implements Exadata’s SmartScan on Hive and NoSQL data sources and provides a single metadata catalog over both relational, and Hadoop, data sources. In a Twitter conversation later in the day though, I made the comment that in my opinion, the biggest benefit of Big Data SQL will be in its ability to extend Oracle’s security model to Hadoop data sources, because Hadoop security Hadoop security is still a bit of a mess:
lang=”en”>To me the greatest benefit of Big Data SQL is the single security model; even with Sentry, Hadoop security is fragmented and a mess (IMO)— Mark Rittman (@markrittman) July 17, 2014
I’ve been working on an Oracle Big Data Appliance project over the past few weeks, as the technical architect and initial sysadmin for the cluster, and it’s given me a first-hand experience of what security’s like on a Hadoop cluster. Over the past few weeks I’ve had to come up with a security policy covering HDFS, Hive and the Cloudera management tools (Cloudera Manager, Hue etc), and try and implement an access and authorisation approach that ensures only designated people can log in, and when they’re in, they can only see the data they’re supposed to see. Hadoop at this point, to my mind, suffers from a couple of major issues when it comes to security:
- It’s fragmented, in that each tool or Hadoop product tends to have its own security setup, and the documentation is all split up, rapidly goes out of date, and is more of a reference than a tutorial (Cloudera’s Security documentation is one of the better examples, but it still splits the key information you need over several sections and several other docs)
- It’s full of holes, such that the default security setup is considered insecure in terms of users being able to spoof their details, and making it more secure is again an exercise in hunting through docs, with some pretty complex configuration steps you need to perform (for example, configuring Kerebos authentication, a prerequisite for things like Apache Sentry)
If we take a typical security policy that a large enterprise customer’s going to want to put in place, it’ll look something like this:
- Users should only be able to log in via their corporate LDAP account, and we’ll want that login process to be secure so it can’t easily be bypassed
- We want to be able to secure our datasets, so that only authorised users can view particular datasets, and there’s likely to be some groups we grant read-only access to, and others we grant read-write
- The data loading processes for the Hadoop cluster need to be locked-down so they can’t overwrite the datasets of other applications
- Our security policy ideally needs to sync-up, or be an extension of, our existing enterprise security policy, not something we maintain separately
- We need to be able to audit and review who’s actually accessing what dataset, to ensure that these policies are being followed and enforced
- We also need the ability to obfuscate or depersonalise data before it gets into the cluster, and also have the option of encrypting the data at-rest as well as on-the-wire
Back in the early days of Hadoop these types of security policy weren’t often needed, as the users of the Hadoop cluster were typically a small set of data scientists or analysts who’d been cleared already to view and work with the data in the cluster (or more likely, they did it and just didn’t tell anyone). But as we move to enterprise information management architectures such as the one outlined in my two-part blog post series a few weeks ago (pt.1, pt.2), the users of Hadoop and other “data reservoir” data sources are likely to increase significantly in number as data from these systems becomes just another part of the general enterprise data set.
But in practice, this is hard to do. Let’s start with HDFS first, the Hadoop Distributed File System on which most Hadoop data is stored. HDFS aims to look as similar to a Linux or Unix-type filesystem as possible, with similar commands (mkdir, ls, chmod etc) and the same POSIX permissions model, where files and directories are associated with an owner and a group and where permissions are set for that owner, the group and all others. For example, in the HDFS file listing below, the “/user/cust_segment_analysis” directory is owned by the user “mrittman” and the group “marketing”, with the directory owner having full read, write and subdirectory traversal access to the directory, the group having read-only and subdirectory traversal access, and all others having no access at all.
[root@bdanode1 ~]# hadoop fs -ls /user Found 13 items drwxrwxrwx - admin admin 0 2014-06-02 16:06 /user/admin drwxr-x--- - mrittman marketing 0 2014-07-26 21:31 /user/cust_segment_analysis drwxr-xr-x - hdfs supergroup 0 2014-05-27 13:19 /user/hdfs drwxrwxrwx - mapred hadoop 0 2014-05-25 20:47 /user/history drwxrwxr-t - hive hive 0 2014-06-04 16:31 /user/hive drwxr-xr-x - hue hue 0 2014-05-31 18:51 /user/hue drwxrwxr-x - impala impala 0 2014-05-25 20:54 /user/impala drwxrwxr-x - oozie oozie 0 2014-05-25 20:52 /user/oozie drwxrwxrwx - oracle oracle 0 2014-06-09 21:38 /user/oracle drwxr-xr-x - root root 0 2014-06-06 16:25 /user/root drwxr-xr-x - sample sample 0 2014-05-31 18:51 /user/sample drwxr-x--x - spark spark 0 2014-05-25 20:45 /user/spark drwxrwxr-x - sqoop2 sqoop 0 2014-05-25 20:53 /user/sqoop2
Which all sounds great until you then have another group that needs read-write access to the directory, but you’re limited to just one group permissions setting for the directory which you’ve already used to set up read-only access for that particular group. If you therefore need to set up different sets of security access for different groups, you typically then end-up creating multiple HDFS directories and multiple copies of the dataset in question, assigning each copy to a different group, which isn’t all that convenient and gives you other problems in terms of maintenance and keeping it all in-sync.
What you of course need is something like the “access control lists” (ACLs) you get with operating systems like Windows NT and MacOS, where you can define an arbitrary number of user groups and then assign each of them their own permission set on the directory and the files it contains. The most recent versions of Hadoop actually implement a form of ACL for HDFS, with this feature making its way into the recently-released Cloudera CDH5.1, but these ACLs are an addition to the standard POSIX user, group, others model and aren’t recommended for all files in your HDFS filesystem as according to the Hadoop docs “Best practice is to rely on traditional permission bits to implement most permission requirements, and define a smaller number of ACLs to augment the permission bits with a few exceptional rules. A file with an ACL incurs an additional cost in memory in the NameNode compared to a file that has only permission bits.” Still, it’s better than not having them at all, and I’d imagine using this feature for particular directories and sets of files that need more than one set of group permissions configured for them.
In most cases though, the way you’ll present data out to non-technical end-users and applications is through Hive and Impala tables, or through tools like Pig and Spark. Under the covers, these tools still use HDFS permissions to control access to the data within Hive and Impala tables, but again by default you’re limited to granting access to whole HDFS directories, or the files contained within those directories. Something that addresses this issue is a product called Apache Sentry, an open-source project within the Hadoop family that enables role-based access control for Hive and Impala tables. Oracle are one of the co-founders of the Sentry project and include it in the base software on the Big Data Appliance, and using Sentry you can grant SELECT, INSERT or ALL privileges to a group on a particular Hive or Impala table, rather than on the underlying HDFS directories and files. A form of fine-grained access control can be set up using Sentry by creating views with particular row-level security settings, giving you the basics of a database-like security policy that you can apply over the main way that users access data in the cluster.
But Sentry itself has a few significant prerequisites – you have to enable Kerebos authentication on your cluster, which you should do anyway because of the risk of account spoofing, but is still a significant thing to set up – and of course you need to link Hive and Impala to your corporate LDAP server and configure them to work in the way that Sentry requires. Most importantly though, you’re still left with the situation where you’ve got two separate security setups – the one for your corporate data warehouse and relational data sources, and another for data accessed on Hadoop, and it’s still hard to be sure, what with all the disparate products and partially-complete open-source products, whether data in your Hadoop cluster is still really secure (though products like Cloudera Navigator aim to provide some form of data governance and auditing over these datasets); and, there’s still no straightforward way to remove individual customers’ data out of the Hadoop dataset (“data redaction”), no easy way to obfuscate or mask data, and no easy way (apart from the Hive views mentioned before) to restrict users to accessing only certain columns in a Hive or Impala table.
And so this is where Oracle’s Big Data SQL product could be very interesting. Big Data SQL takes the Exadata model of moving as much filtering and column-projection as it can to the storage server, adding Oracle SmartScan functionality to the Hadoop node and allowing it to understand the full Oracle SQL dialect (and PL/SQL security functions), rather than just the subset of SQL provided by HiveQL and Impala SQL.
More importantly, it’ll enable a single unified data dictionary over both Oracle and Hadoop data sources, presenting Hive tables and NoSQL data as regular Oracle tables and allowing the DBA to create data security, redaction and row-level filtering policies over both relational and Hadoop data – giving you potentially the ability to define a single security policy across all data in your overall information management architecture.
So I think this is actually a “big deal”, and potentially even more game-changing that the SmartScan functionality that got most of the attention with the Big Data SQL product launch. How well it’ll work in-practice, and how much will be enabled on day one it’s hard to say, but this feature meets a real need that our customers are finding now, so I’ll be very interested to try it out when the product becomes available (presumably) later in the year.
Taking a Look at the New Oracle Big Data SQL
Oracle launched their Oracle Big Data SQL product earlier this week, and it’ll be of interest to anyone who saw our series of posts a few weeks ago about the updated Oracle Information Management Reference Architecture, where Hadoop now sits alongside traditional Oracle data warehouses to provide what’s termed a “data reservoir”. In this type of architecture, Hadoop and its underlying technologies HDFS, Hive and schema-on-read databases provide an extension to the more structured relational Oracle data warehouses, making it possible to store and analyse much larger sets of data with much more diverse data types and structures; the issue that customers face when trying to implement this architecture is that Hadoop is a bit of a “wild west” in terms of data access methods, security and metadata, making it difficult for enterprises to come up with a consistent, over-arching data strategy that works for both types of data store.
Oracle Big Data SQL attempts to address this issue by providing a SQL access layer over Hadoop, managed by the Oracle database and integrated in with the regular SQL engine within the database. Where it differs from SQL on Hadoop technologies such as Apache Hive and Cloudera Impala is that there’s a single unified data dictionary, single Oracle SQL dialect and the full management capabilities of the Oracle database over both sources, giving you the ability to define access controls over both sources, use full Oracle SQL (including analytic functions, complex joins and the like) without having to drop down into HiveQL or other Hadoop SQL dialects. Those of you who follow the blog or work with Oracle’s big data connector products probably know of a couple of current technologies that sound like this; Oracle Loader for Hadoop (OLH) is a bulk-unloader for Hadoop that copies Hive or HDFS data into an Oracle database typically faster than a tool like Sqoop, whilst Oracle Direct Connector for HDFS (ODCH) gives the database the ability to define external tables over Hive or HDFS data, and then query that data using regular Oracle SQL.
Where ODCH falls short is that it treats the HDFS and Hive data as a single stream, making it easy to read once but, like regular external tables, slow to access frequently as there’s no ability to define indexes over the Hadoop data; OLH is also good but you can only use it to bulk-load data into Oracle, you can’t use it to query data in-place. Oracle Big Data SQL uses an approach similar to ODCH but crucially, it uses some Exadata concepts to move processing down to the Hadoop cluster, just as Exadata moves processing down to the Exadata storage cells (so much so that the project was called “Project Exadoop” internally within Oracle up to the launch) – but also meaning that it’s Exadata only, and not available for Oracle Databases running on non-Exadata hardware.
As explained by the launch blog post by Oracle’s Dan McClary, Oracle Big Data SQL includes components that install on the Hadoop cluster nodes that provide the same “SmartScan” functionality that Exadata uses to reduce network traffic between storage servers and compute servers. In the case of Big Data SQL, this SmartScan functionality retrieves just the columns of data requested in the query (a process referred to as “column projection”), and also only sends back those rows that are requested by the query predicate.
Combined with Hive’s ability to map unstructured data sources into regular columns and tables, and Big Data SQL’s support for Oracle NoSQL database, the promise of this new technology is the ability to run queries against both relational, Hadoop and NoSQL data sources using a common data dictionary and common set of identity and data access controls.
There’s a couple of potential downsides, though. First-off, Big Data SQL will only be available as part of Oracle Big Data Appliance, which though an impressive bit of hardware and software is a much smaller market than the total set of Oracle customers looking to combine relational and Hadoop-based data; it’s also restricted to Oracle 12c on Exadata meaning you’ll most probably need to do a database upgrade even if you’ve already got the required Exadata servers in-place. Finally, it’s also restricted to the Oracle-specific distribution of Cloudera Hadoop, though if you’re using the BDA you’ll be using this anyway.
My other concern though is that Oracle now focus on SQL as their only access mechanism into Hadoop and big data, in a similar way to how they focused on SQL as their access route into OLAP when they incorporated Oracle Express into the Oracle Database, back in the mid-2000’s. Focusing on SQL over multidimensional languages such as Express 4GL and MDX meant you missed the real point of using a multidimensional, OLAP database – which of course was being able to use a multidimensional query language, and my concern with Big Data SQL is that we’ll end up focusing on that rather than languages such as Spark, Pig and NoSQL query languages which, combined with schema-on-read, is the real differentiator for Hadoop-based systems. As long as Big Data SQL is positioned as a “bonus” – a convenient way of getting data out of Hadoop once it’s been processed and analysed using more Hadoop-native technologies – then Big Data SQL will be a great enabling and acceptance technology for enterprises, rather than one that ends up restricting them.
We’re not aware of any beta program and I don’t think the launch webcast mentioned a specific date or BDA version when Big Data SQL will be out, but with Openworld coming up soon I’d expect to hear more about this over the next few months. We’re involved in a couple of significant Oracle Big Data Appliance implementations at the moment and this product would address a real, pressing need at the moment with our customers, so I’m looking forward to getting more involved in it over the next few months.
This article was updated on 18th July to add the fact that Big Data SQL is only available on Exadata, and is not a generic Oracle Database 12c technology.
Introducing the Updated Oracle / Rittman Mead Information Management Reference Architecture Pt1. – Information Architecture and the “Data Factory”
One of the things at Rittman Mead that we’re really interested in, is the architecture of “information management” systems and how these change over time as thinking, and product capabilities, evolve. In fact we often collaborate with the Enterprise Architecture team within Oracle, giving input into the architecture designs they come up with, and more recently working on a full-blown collaboration with them to come up with a next-generation Information Management architecture. I these two posts I wanted to share some of our recent thinking in this area, looking first at our new proposed architecture, and then in the second post talking about how we’d use agile development methods, in-particular our “ExtremeBI” development approach, to deliver it.
But first, some history. Back in 2009 I blogged about a first-generation DW reference architecture which introduced a couple of new concepts, based on new capabilities from tools such as OBIEE plus some thinking we, and the Enterprise Architecture team at Oracle, had been doing over the years. This reference architecture introduced the concept of “Foundation” and “Access and Performance” layers, and recognised the reality that Kimball-type star schemas were great for querying but not so good for long-term, query-neutral storage of data, whilst Inmon-style EDW models were great as a long-term, process-neutral system of record, but not so good for running user queries on. This new architecture included both of these design approaches, with the foundation layer forming the “information management” layer and the access and performance layer being the “information access” layer. Most importantly, tools like OBIEE made it possible for enterprises to create metadata layers that potentially accessed all layers in this model, so users could query the foundation layer if needed as well as the access and performance layer, if the foundation layer was a better source of data for a particular reports.
A second revision to this model, a couple of years later, expanded on the original one and introduced another two interesting concepts, brought upon by the introduction of tools like Endeca Information Discovery, and the rise of unstructured and semi-structured data sources. This new architecture added unstructured and semi-structured sources into the model, and also introduced the concept of “sandboxes”, areas of the information management model that allowed more free-form, exploratory BI applications to be built.
But in-practice, this idea of “unstructured” and “semi-structured” sources wasn’t all that helpful. What really started to make an impact in the past couple of years is the increasing use of “schema-on-read” databases, where we trade-off the performance and defined structure of traditional relational 3NF and star schemas for the flexibility and “time-to-value” provided by key-value store databases. The Endeca Server is a good example of these types of database, where the Endeca Server allows rapid storage of loosely-associated datasets and tools like Endeca Studio then apply a structure to the data, at the time of analysis. Schema-on-read databases are great for fast, flexible access to datasets, but the cost of ETL is then borne by each system that accesses the data.
Probably the most well-known examples of schema-on-read sources though are Hadoop, and NoSQL databases. Coupled with their ability to store lots of detail-level data at relatively low cost, Hadoop and NoSQL databases have significantly affected the overall landscape for BI, data warehousing and business analytics, and we thought it was about time for a new reference architecture that fully-incorporated the capabilities and latest thinking around this area. Back at the start of 2014 myself, Jon Mead and Stewart Bryson met up with Oracle’s Andrew Bond in his team for a series of workshops, and what came out of it was an updated Information Management Architecture *and* a development methodology for delivering it. Let’s start off then by looking at this updated architecture from a conceptual view.
At a conceptual level, we build on this idea of sandbox environment and formally separate things out into the Execution area – business-as-usual, production and development areas – and an Innovation area, where we build on the idea of a sandbox and rename it the “Discovery lab”. The Discovery lab is where, for want of a better word, the “data scientists” work, with fewer constraints on development and whose inputs are events and data, and outputs are the discovery output that can be the prototype and inspiration for designs going into the execution area.
The main “engine” of the Execution area is our enterprise store of data, this time broken down into four areas:
- A “data reservoir” where we store all incoming events and data at detail-level, typically on HDFS. This blog article by Oracle’s Jean-Pierre Dijcks sets out the concept of a data reservoir well, and I like this blog by Scaleabilities’ Jeff Needham where he makes the case for calling it a “data reservoir” that can ingest, process and analyse data rather than a “data lake”, which implies a passive store.
- An Enterprise Data Store, analogous to the enterprise data warehouses we use today, and a reporting component, typically in our case OBIEE
- Most importantly, the new concept of a “data factory”, a conduit between the data reservoir and the enterprise information store
Together, the execution and innovation layers form our “information platform”, with the event engine feeding real-time events into the platform and outputting them into the data reservoir, and traditional ETL routines loading structured data from the enterprise into the enterprise information store.
This conceptual architecture then permits several types of information application. For example, the data reservoir and the data factory together could support what we call “data applications”, applications working on semi-structured, large and low-granularity data sets such as those used for genomic analysis.
Other applications might be more traditional BI and data warehousing applications, but with the addition of data from the data reservoir and the analysis capabilities of Hadoop.
The discovery lab can be a standalone area, or the insights and discovery it outputs can be used as inputs into the main information platform. More event-based data will typically come in via the event engine, with its output going into the data reservoir and supporting “next-best-decision” applications like Oracle Real-Time Decisions.
Another way of looking at this architecture is from a logical perspective, in particular focusing on the data layers and access/loading processes to load them. The diagram below is our latest version of the two diagrams at the start of this article, and as you can see we’ve kept the data sources and BI element much the same, and kept the concept of the sandbox, in this case refined as the “discovery lab sandbox”.
What is different this time though is the middle bit; we’ve lost the staging area and replaced it with the raw data reservoir, added a “Rapid Development Sandbox”, and drawn the main layers as a slanted set of stacked areas. So why?
What we’re trying to show with the slanted data layers is the relative cost of data ingestion (loading), and the relative cost of accessing it (information interpretation). For the raw data reservoir, for example, there’s little cost in ingesting the data – maybe copy some files to HDFS, or use Flume or GoldenGate to capture log or transaction data to HDFS or Hive, but the cost is then borne in accession this typically “schema-on-read” data source. As you go up the stack, there’s a bit more work in landing data into the Foundation layer – ETL routines, GoldenGate routines, some data cleaning and constraint checking, for example – but it’s correspondingly easier to get data out. For the Access and Performance Layer there’s the most cost in getting data in, but then users have very little work to do when getting data out.
Data can move up the stack from Raw Data Reservoir to Foundation, or directly into Access and Performance, or it could be landed at levels above Raw Data Reservoir, for example in our ExtremeBI approach where we use GoldenGate to replicate source system tables directly into Foundation without going through a staging layer. The Rapid Development Sandboxes are there to support agile, iterative development, with the output from them either being the result in itself, or their designs and insights being used to create more formal projects and data structures.
From a more product-centric perspective, you can overlay these types of diagrams with specific schematics for example enterprises. For example, in the diagram below you can see Oracle NoSQL database being see with HDFS and the Oracle Big Data Connectors to capture and store events from Complex Event Processing, and then outputs from CEP being also fed into a more traditional, “high density data” store as well as directly into a decision engine.
So this all sounds great, but how do you build it? Do we have to use the (discredited) step-by-step, waterfall method to build this type of architecture, and in particular the key “data factory” element that provides connectivity between the Raw Data Reservoir and the Enterprise Information Store? And can we apply agile methods to big data sources, as well as regular databases and applications? Check back on Monday for our thoughts on how this should be done.
End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.5 : Bulk Unload to Oracle
All week I’ve been looking at what’s involved in moving data around Hadoop on the Oracle Big Data Appliance, using ODI12c to orchestrate the end-to-end process. Using web log data from the Rittman Mead website, I first landed the log data on HDFS using Apache Flume, then transformed the data in several stages using Hive transformations built using ODI mappings and knowledge modules. The links below give the previous articles in this series, where you can read how I transformed data using Hive, Sqoop and Python streaming:
- End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.1 : Flume to Initial Hive Table
- End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.2 : Hive Table Joins, Aggregation and Loading
- End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.3 : Enhance with Oracle Reference Data via Sqoop, and CKMs
- End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.4 : Transforming Data using Python & Hive Streaming
- End-to-End ODI12c ETL on Oracle Big Data Appliance Pt.5 : Bulk Unload to Oracle
At the end of all these ODI12c transformations, I’m left with a Hive table containing summarised web page accesses, enhanced with reference data on the page title and author, and with the entries geocoded with the name of the country associated with the page access. In many cases, this is where I’d leave the data, but quite often it’d be useful to then export the data out of Hadoop and into an Oracle database, so that I could load it into a data warehouse, or analyse it using a richer SQL dialect than I can get with HiveQL. I could use Sqoop to get the data out of Hive and into Oracle, but for larger exports in particular I’d get better unload performance by using Oracle Loader for Hadoop, one of the Oracle Big Data Connectors that typically come with Oracle Big Data Appliance.
There’s actually two Oracle Big Data Connectors that deal with getting data out of Hadoop and into Oracle; Oracle Direct Connector for HDFS (ODCH) gives you the ability to define an Oracle Database External Table over a HDFS file or Hive table, and is useful if you just want to access the data in Hadoop without actually loading it into an Oracle Database.
The way ODCH works is that it adds a special type of adapter to the external table feature in Oracle Database, that gives the database the ability to stream HDFS files in a similar way to how external tables stream regular file data into the database. This makes ODCH very convenient if you just want access to HDFS or Hive data from an Oracle database, but it suffers from the same performance penalty as regular external flat file access, in that you can’t index the table and so forth; so if you want high-performance access to data held in a Hadoop system, and you need this access more than just occasionally, you’re better off copying the data right into the Oracle database, and this is where Oracle Loader for Hadoop comes in.
Oracle Loader for Hadoop (OLH) is a bulk-unloader for Hadoop that uses MapReduce technology to sort, partition and organise the data extraction at the Hadoop end, and then fast-unload the data into the Oracle Database typically much faster than a Sqoop data transfer.
OLH is, however, a bit fiddly to setup, so what’s useful is that ODI has a knowledge module, IKM File/Hive to Oracle, that can set up both OLH and ODCH jobs. This knowledge module does have its own setup process that itself is a bit involved – mostly around environment variables on your Linux system – but once its done, each OLH data transfer is then very easy to setup, and as long as you don’t then go on to do any more transformation on the Oracle data post-unload, it’s covered by the ODI limited-use license you get when you buy it in conjunction with the BDA.
So the key things to get OLH working with ODI are firstly, to install OLH on the BDA node that’s running the ODI12c agent (or in my case, full ODI Studio), and then set up the Oracle user’s environment variables so OLH works, and ODI knows where to find any additional Hadoop / Hive libraries and configuration files to work with OLH. In my case, this meant adding the following entries to my .bashrc file:
export HIVE_HOME=/usr/lib/hive export HADOOP_CLASSPATH=/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/*:/etc/hive/conf:$HIVE_HOME/lib/hive-metastore-0.12.0-cdh5.0.1.jar:$HIVE_HOME/lib/libthrift.jar:$HIVE_HOME/lib/libfb303-0.9.0.jar:$HIVE_HOME/lib/hive-common-0.12.0-cdh5.0.1.jar:$HIVE_HOME/lib/hive-exec-0.12.0-cdh5.0.1.jar export OLH_HOME=/home/oracle/oracle/product/oraloader-3.0.0-h2 export HADOOP_HOME=/usr/lib/hadoop export JAVA_HOME=/usr/java/jdk1.7.0_60 export ODI_HIVE_SESSION_JARS=/usr/lib/hive/lib/hive-contrib.jar export ODI_OLH_JARS=/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/ojdbc6.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/orai18n.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/orai18n-utility.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/orai18n-mapping.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/orai18n-collation.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/oraclepki.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/osdt_cert.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/osdt_core.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/commons-math-2.2.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/jackson-core-asl-1.8.8.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/jackson-mapper-asl-1.8.8.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/avro-1.7.3.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/avro-mapred-1.7.3-hadoop2.jar,/home/oracle/oracle/product/oraloader-3.0.0-h2/jlib/oraloader.jar,/usr/lib/hive/lib/hive-metastore.jar,/usr/lib/hive/lib/libthrift-0.9.0.cloudera.2.jar,/usr/lib/hive/lib/libfb303-0.9.0.jar,/usr/lib/hive/lib/hive-common-0.12.0-cdh5.0.1.jar,/usr/lib/hive/lib/hive-exec.jar
where OLH was installed to /home/oracle/oracle/product/oraloader-3.0.0-h2, Hadoop was installed to /usr/lib/hadoop and Hive to /usr/lib/hive. ODI_HIVE_SESSION_JARS is optional, but if you do anything fancy with SerDes in your mappings you’re best adding this entry in, to the hive-contrib.jar file (or technically the symbolic link to it). Getting this right was the hardest part about setting this KM up, but once it’s done, it’s done.
Then, to set the ODI parts up, I first create a table in my Oracle 11.2.0.3 database with matching datatypes for the Hive table i’m going to unload; varchar2 for string, number for int, etc, and then create entries in the ODI topology and Designer navigator. Then, I create a new mapping in ODI12c, where I copy the columns from my Hive table into the Oracle table, like this (note that I could map from an HDFS file instead, if I wanted to):
Now it’s a case of configuring the Physical part of the mapping. There’s two steps to this; first, you have to change the default LKM setting for the access table in the physical mapping, the ACCESS_F object in the TARGET_GROUP below:
By default this sets itself to LKM SQL to Oracle (as you’ve got an Oracle target), but we need to change this to a special one, LKM SQL Multi-Connect (below), that delegates the multi-connect capabilities to the downstream node, so you can use a multi-connect IKM such as IKM File/Hive to Oracle.
Then, and only once you’ve selected this LKM, you can select IKM File/Hive to Oracle for the target table KM.
There’s not much you need to enable with this KM to at least get started. Set OLH_OUTPUT_MODE to JDBC (you can enable OCI later on instead, for potentially faster unloading) and set MAPRED_OUTPUT_BASE_DIR to an HDFS directory that the agent’s OS user (typically “oracle”) can read and write to – in my case, I created one specifically for this KM, using Hue’s File System browser tool. Then, if all’s set up correctly you should be able to execute the mapping and view the results in the Operator navigator – note that in my case, it took several attempts before I finally got all the environment variable settings right. Once done, you should then be able to view the Hive table output in your Oracle table, using SQL Developer.
So now, we’ve got each step for our end-to-end process. The only thing left to do is to pull all of these steps, including the ODI Procedure to run the sqoop transfer, into an ODI package or load plan, so that we can run the steps in sequence:
Then, finally, I can run the whole process as a single execution, moving data from Flume capture through Hadoop ETL steps, to the unload into an Oracle table, all from within ODI12c.
So there you have it – Hadoop-native ETL processing, with the metadata-driven design, error handling and heterogenous connectivity provided by ODI12c.