Category Archives: Rittman Mead

BI Forum 2015 Preview — OBIEE Regression Testing, and Data Discovery with the ELK stack

I’m pleased to be presenting at both of the Rittman Mead BI Forums this year; in Brighton it’ll be my fourth time, whilst Atlanta will be my first, and my first trip to the city too. I’ve heard great things about the food, and I’m sure the forum content is going to be awesome too (Ed: get your priorities right).

OBIEE Regression Testing

In Atlanta I’ll be talking about Smarter Regression testing for OBIEE. The topic of Regression Testing in OBIEE is one that is – at last – starting to gain some real momentum. One of the drivers of this is the recognition in the industry that a more Agile approach to delivering BI projects is important, and to do this you need to have a good way of rapidly testing changes made. The other driver that I see is OBIEE 12c and the Baseline Validation Tool that Oracle announced at Oracle OpenWorld last year. Understanding how OBIEE works, and therefore how changes made can be tested most effectively, is key to a successful and efficient testing process.

In this presentation I’ll be diving into the OBIEE stack and explaining where it can be tested and how. I’ll discuss the common approaches and the relative strengths of each.

If you’ve not registered for the Atlanta BI Forum then do so now as places are limited and selling out fast. It runs May 14–15 with an optional masterclass on Wednesday 13th May from Mark Rittman and Jordan Meyer.

Data Discovery with the ELK Stack

My second presentation is at the Brighton forum the week before Atlanta, and I’ll be talking about Data Discovery and Systems Diagnostics with the ELK stack. The ELK stack is a set of tools from a company called Elastic, comprising Elasticsearch, Logstash and Kibana (E – L – K!). Data Discovery is a crucial part of the life cycle of acquiring, understanding, and exploiting data (one could even say, leverage the data). Before you can operationalise your reporting, you need to understand what data you have, how it relates, and what insights it can give you. This idea of a “Discovery Lab” is one of the key components of the Information Management and Big Data Reference Architecture that Oracle and Rittman Mead produced last year:

ELK gives you great flexibility to ingest data with loose data structures and rapidly visualise and analyse it. I wrote about it last year with an example of analysing data from our blog and associated tweets with data originating in Hadoop, and more recently have been analysing twitter activity using it. The great power of Kibana (the “K” of ELK) is the ability to rapidly filter and aggregate data, as well as see a summary of values within a data field:

The second aspect of my presentation is still on data discovery, but “discovering data” within the logfiles of an application stack such as OBIEE. ELK is perfectly suited to in-depth diagnostics against dense volumes of log data that you simply could not handle within simple log viewers or Enterprise Manager, such as the individual HTTP requests and types of value passed within the interactions of a single user session:

By its nature of log streaming and full text search, ELK also lends itself well to near real time system monitoring dashboards reporting the status of systems including OBIEE and ODI, and I’ll be discussing this in more detail during my talk.

The Brighton BI Forum is on 7–8 May, with an optional masterclass on Wednesday 6th May from Mark Rittman and Jordan Meyer. If you’ve not registered for the Brighton BI Forum then do so now as places are very limited!


Don’t forget, we’re running a Data Visualisation Challenge at each of the forums, and if you need to convince your boss to let you go you can find a pre-written ‘justification’ letter here.

BI Forum 2015 Preview — OBIEE Regression Testing, and Data Discovery with the ELK stack

I’m pleased to be presenting at both of the Rittman Mead BI Forums this year; in Brighton it’ll be my fourth time, whilst Atlanta will be my first, and my first trip to the city too. I’ve heard great things about the food, and I’m sure the forum content is going to be awesome too (Ed: get your priorities right).

OBIEE Regression Testing

In Atlanta I’ll be talking about Smarter Regression testing for OBIEE. The topic of Regression Testing in OBIEE is one that is – at last – starting to gain some real momentum. One of the drivers of this is the recognition in the industry that a more Agile approach to delivering BI projects is important, and to do this you need to have a good way of rapidly testing changes made. The other driver that I see is OBIEE 12c and the Baseline Validation Tool that Oracle announced at Oracle OpenWorld last year. Understanding how OBIEE works, and therefore how changes made can be tested most effectively, is key to a successful and efficient testing process.

In this presentation I’ll be diving into the OBIEE stack and explaining where it can be tested and how. I’ll discuss the common approaches and the relative strengths of each.

If you’ve not registered for the Atlanta BI Forum then do so now as places are limited and selling out fast. It runs May 14–15 with an optional masterclass on Wednesday 13th May from Mark Rittman and Jordan Meyer.

Data Discovery with the ELK Stack

My second presentation is at the Brighton forum the week before Atlanta, and I’ll be talking about Data Discovery and Systems Diagnostics with the ELK stack. The ELK stack is a set of tools from a company called Elastic, comprising Elasticsearch, Logstash and Kibana (E – L – K!). Data Discovery is a crucial part of the life cycle of acquiring, understanding, and exploiting data (one could even say, leverage the data). Before you can operationalise your reporting, you need to understand what data you have, how it relates, and what insights it can give you. This idea of a “Discovery Lab” is one of the key components of the Information Management and Big Data Reference Architecture that Oracle and Rittman Mead produced last year:

ELK gives you great flexibility to ingest data with loose data structures and rapidly visualise and analyse it. I wrote about it last year with an example of analysing data from our blog and associated tweets with data originating in Hadoop, and more recently have been analysing twitter activity using it. The great power of Kibana (the “K” of ELK) is the ability to rapidly filter and aggregate data, as well as see a summary of values within a data field:

The second aspect of my presentation is still on data discovery, but “discovering data” within the logfiles of an application stack such as OBIEE. ELK is perfectly suited to in-depth diagnostics against dense volumes of log data that you simply could not handle within simple log viewers or Enterprise Manager, such as the individual HTTP requests and types of value passed within the interactions of a single user session:

By its nature of log streaming and full text search, ELK also lends itself well to near real time system monitoring dashboards reporting the status of systems including OBIEE and ODI, and I’ll be discussing this in more detail during my talk.

The Brighton BI Forum is on 7–8 May, with an optional masterclass on Wednesday 6th May from Mark Rittman and Jordan Meyer. If you’ve not registered for the Brighton BI Forum then do so now as places are very limited!


Don’t forget, we’re running a Data Visualisation Challenge at each of the forums, and if you need to convince your boss to let you go you can find a pre-written ‘justification’ letter here.

Data Integration Tips: ODI 12.1.3 – Convert to Flow

The many who have already upgraded Oracle Data Integrator from the 11g version to 12c probably know about this great feature called “convert to flow”. If not, well…here you go!

First, a little background on why I think this is an excellent bit of functionality. The ODI Upgrade Assistant will convert objects from 11g to 12c and it does a pretty decent job of it. When converting Interfaces, the upgrade process creates a Mapping in ODI 12c by taking the logical “mapping” layout and loading it into a Dataset object. I assumed the reason was because it wasn’t easy to convert an Interface directly to a full on flow-based mapping, which you typically would develop in ODI 12.1.3 rather than using the limited Dataset (only joins, filters, and lookups allowed). After the upgrade, you would then be stuck with loads of mappings that are not using the latest flow-based features and components.

interface-and-mapping-ds

Now, in ODI 12.1.3, we have the ability to convert our Dataset into the standard ODI 12c flow based components within the Mapping. With a right-click on the Dataset component, we can see the “Convert to Flow” option.

convert-to-flowconfirm

Select Convert to Flow and accept the warning that our Mapping will be changed forever…and boom! No more Dataset!

This is great for my individual Mappings, but now I want to convert my migrated Reusable Mapping Datasets to flow based components.

reusable-convert-to-flow-missing-ds

Wait, what? No option to Convert to Flow! It looks like the Reusable Mappings (which were upgraded from my ODI 11g Temporary Interfaces) cannot be converted to flow for some reason. Hmm… Well, let’s finish converting my Datasets to flow based components for the rest of my 342 upgraded Mappings…one-by-one. Yikes! Actually, we can find a better way to do this. Time to get Groovy with the ODI SDK!

Using Groovy, I can create a simple script to loop through all of my mappings, find the dataset, and call the convertToFlow function on that dataset component. Here’s a look at the guts of the script.

for (mapping in mappingsList){
  componentsList=mapping.getAllComponentsOfType("DATASET")
  
  for (component in componentsList){

    java.util.List convertIssues = new ArrayList()
    blnConvert = 1
    
    try {
      blnConvert = component.convertToFlow(convertIssues)
      
      if (blnConvert) {
        for (item in convertIssues) {
          out.println item.toString()
        }
      }
      
    } catch (Exception e) {
    
    out.println e;
    
    }
  
    out.println mapping.getName() + " had a dataset converted to flow."
  }
}

Just remember to pass the results list object as a parameter to the convertToFlow call (and make sure the List object is properly instantiated as an ArrayList – as I was humbly reminded by David Allan via Twitter!). Once completed, you should be able to open each mapping and see that the dataset has been removed and only flow-based components exist.

Excellent, now we’ve completed our conversion in no time at all. But wait, what about those Reusable Mappings? Remember, we don’t have the right-click menu option to convert to flow as we did with the standard Mapping. Well, let’s see what our friend the ODI SDK has to say about that!

With a slight tweak to the code, replacing Mapping classes with ReusableMapping classes, we can batch convert our Reusable Mapping dataset components to flow based components in an instant. The reason it works via the API is due to the inheritance of the ReuseableMapping class. It inherits the same component methods from the interface oracle.odi.domain.mapping.IMapComponentOwner, which in turn have the same methods and functions, such as convertToFlow, as we had available in the Mapping class. I’m not quite sure why ODI Studio doesn’t expose “Convert to Flow” in the Reusable Mappings, but I’m sure it’s a simple fix we’ll see in an ODI 12c release down the road.

So there you have it, another Data Integration Tip from Rittman Mead – this time, a little help post-migration from ODI 11g to ODI 12c. If you would like more details on how Rittman Mead can help your migration of Oracle Data Integrator to the latest version, send us a note at info@rittmanmead.com. We’d love to help!

 

Oracle Data Integrator Enterprise Edition Advanced Big Data Option Part 1- Overview and 12.1.3.0.1 install

Oracle recently announced Oracle Data Integrator Enterprise Edition Advanced Big Data Options as part of the new 12.1.3.0.1 release of ODI. It includes various great new functionalities to work on an Hadoop ecosystem. Let’s have a look at the new features and how to install it on Big Data Lite 4.1 Virtual Machine.

Note that some of these new features, for example Pig and Spark support and use of Oozie, requires the new ODI EE Advanced Big Data Option license on-top of base ODI EE.

Pig and Spark support

So far ODI12c allowed us to use Hive for any Hadoop-based transformation. With this new release, we can now use Pig and Spark as well. Depending on the use case, we can choose which technology will give better performance and switch from one to another with very few changes. That’s the beauty of ODI – all you need is to do is create the logical dataflow in your mapping and choose your technology. There is no need to be a Pig Latin expert or a PySpark ninja, all of this will be generated for you! These two technologies are now available in the Topology, along with the Hadoop Data Server to define where lies the Data. You can also see some Loading Knowledge Modules for Pig and Spark.

Pig and Spark in ODI

Pig, as Mark wrote before, is a dataflow language. It makes it really appropriate with the new “flow paradigm” introduced in ODI 12c. The idea is to write a data pipeline in Pig Latin. That code will undercover create MapReduce jobs that will be executed.

Quoting Mark one more time, Spark is a cluster processing framework that can be used in different programming languages, the two most common being Python and Scala. It allows to do operation like filters, joins and aggregates. All of this can be done in-memory which can provides way better performance over MapReduce. The ODI team choose to use Python as a programming language for Spark so the Knowledge Modules will use PySpark.

New Hive Driver and LKMs

This release also brings significant improvements to the existing Hive technology. A new driver as been introduced under the name DataDirect Apache Hive JDBC Driver. It is actually the Weblogic Hive JDBC driver which aims at improving the performance and the stability.

New Hive Driver

New Knowledges Modules are introduced to benefit from this new driver and they are LKMs instead multi-connections IKMs as it use to be. Thanks to that, it can be combined with other LKMs into the same mapping which was not the case before.

Oozie Agent

Oozie is another Apache project and they define it as “a workflow scheduler system to manage Apache Hadoop jobs”. We can create workflow of different jobs in the Hadoop stack, and then schedule it at a certain time or trigger it when data becomes available.

What Oozie does is similar to the role of the ODI agent, and it’s now possible to use directly an existing Oozie engine instead of deploying a standalone agent on the hadoop cluster.

Oozie Engine

The Oozie engine will do what your ODI agent usually does – execution, scheduling, monitoring – but it is integrated in the Hadoop ecosystem. So we will be able to schedule and monitor our ODI jobs at the same place as all our other Hadoop jobs that we use outside of ODI. Oozie can also automatically retrieve the Hadoop logs. Also we lower the footprint because it doesn’t requires to install an ODI-specific component on the cluster. However, according to the white paper (link below), it looks like Load Plans are not supported. So the idea would be to execute the Load Plans with a standalone or JEE agent that will delegate the execution of Big Data-related scenarios to the Oozie Engine.

HDFS support in file-related ODI Tools

Most of the ODI tools handling files can also do it on HDFS now. So you can delete, move, copy files and folders. You can also append files and transfer it to HDFS via FTP. It’s even possible to detect when a file is created on HDFS. All you need to do is to indicate your Hadoop Logical Schema for source, target or both. In the following example I’m copying a file from the Unix filesystem to HDFS.

odi_tools_hdfs

I think this is a huge step forward. If we want to use ODI 12c for our Hadoop data integration, it must be able to do everything end-to-end. The maintenance or administrative tasks such as archiving, deleting or copying should also be done using ODI. So far it was a bit tedious to created a shell script using hdfs dfs commands and then launch it using OdiOsCommand tool. Now we can directly use the file tools in a package or a procedure!

New mapping components : Jagged and Flatten

The two new components can be used in a Big Data context but also in your traditional data integration. The first one, Jagged, will pivot a set of key-value pairs into a columns with their values.

The Flatten components can be used with advanced files when you have nested attributes, like in JSON. Using a flatten component will generate more rows if needed to extract different values for a same attribute nested into another attribute.

 

You can see the detail of all the new features in the white paper “Advancing Big Data Integration” for ODI 12c.

 

How to install it?

This patch must be applied on top of an existing Oracle Data Integrator 12.1.3.0.0 installation. It is not a bundled patch and it’s only related to Big Data Options so there is no point to install it if you don’t need its functionalities. Also make sure you are licensed for ODIEE Advanced Big Data Option if you plan to use Spark or Pig technology/KMs or execute your jobs using the Oozie engine.

To showcase this, I used the excellent –and free! – Big Data Lite 4.1 VM which already has ODI 12.1.3 and all the Hadoop components we need. So this example will be on an Oracle Enterprise Linux environment.

The first step is to download it from the OTN or My Oracle Support. Also make sure you close ODI Studio and shut down the agents. Then the README recommends to update OPatch and check the OUI. So let’s do that and also set some environment variables and unzip the ODI patch.

[oracle@bigdatalite ~]$ mkdir /home/oracle/bck
[oracle@bigdatalite ~]$ ORACLE_HOME=/u01/ODI12c/
[oracle@bigdatalite ~]$ cd $ORACLE_HOME
[oracle@bigdatalite ODI12c]$ unzip /home/oracle/Desktop/p6880880_132000_Generic.zip -d $ORACLE_HOME 
[oracle@bigdatalite ODI12c]$ OPatch/opatch lsinventory -jre /usr/java/latest/
[oracle@bigdatalite ODI12c]$ export PATH=$PATH:/u01/ODI12c/OPatch/
[oracle@bigdatalite ODI12c]$ unzip -d /home/oracle/bck/ /home/oracle/Desktop/p20042369_121300_Generic.zip 
[oracle@bigdatalite ODI12c]$ cd /home/oracle/bck/

This patch is actually composed of three piece. One of them, the second one, is only needed if you have an enterprise installation. If you have a standalone install, you can just skip it. Note that I always specify the JRE to be used by OPatch to be sure everything works fine.

[oracle@bigdatalite bck]$ unzip p20042369_121300_Generic.zip
[oracle@bigdatalite ODI12c]$ cd 20042369/
[oracle@bigdatalite 20042369]$ opatch apply -jre /usr/java/latest/
[oracle@bigdatalite 20042369]$ cd /home/oracle/bck/

 // ONLY FOR ENTERPRISE INSTALL
 //[oracle@bigdatalite bck]$ unzip p20674616_121300_Generic.zip
 //[oracle@bigdatalite bck]$ cd 20674616/
 //[oracle@bigdatalite 20674616]$ opatch apply -jre /usr/java/latest/
 //[oracle@bigdatalite 20674616]$ cd /home/oracle/bck/

[oracle@bigdatalite bck]$ unzip p20562777_121300_Generic.zip 
[oracle@bigdatalite bck]$ cd 20562777/
[oracle@bigdatalite 20562777]$ opatch apply -jre /usr/java/latest/

Now we need to run the upgrade assistant that will execute some scripts to upgrade our repositories. But in Big Data Lite, the tables of the repository have been compressed, so we first need to uncompress them and rebuild the invalid indexes as David Allan pointed it out on twitter. Here are the SQL queries that will create the DDL statement you need to run if you are also using Big Data Lite VM :

select
 'alter table '||t.owner||'.'||t.table_name||' move nocompress;' q
 from all_tables t
 where owner = 'DEV_ODI_REPO'
 and table_name <> 'SNP_DATA';

select 'alter index '||owner||'.'||index_name||' rebuild tablespace '||tablespace_name ||';'
 from all_indexes
 where owner = 'DEV_ODI_REPO'
 and status = 'UNUSABLE';

Once it’s done we can start the upgrade assistant :

[oracle@bigdatalite 20562777]$ cd /u01/ODI12c/oracle_common/upgrade/bin
[oracle@bigdatalite bin]$ ./ua

Upgrade Assistant

The steps are quite straightforward so I’ll leave it to you. Here I selected Schemas, but if you have a standalone agent you will have to run it again and select “Standalone System Component Configurations” to upgrade the domain as well.

Before opening ODI Studio we will clear the JDev cache so we are sure everything looks nice.

[oracle@bigdatalite bin]$ rm -rf /home/oracle/.odi/system12.1.3.0.0/

We can now open ODI Studio. Don’t worry the version mentioned there and in the upgrade assistant is still 12.1.3.0.0 but if you can see the new features it has been installed properly.

The last step is to go in the topology and change the driver used for all the Hive Data Server. As all the new LKMs use the new weblogic driver, we need to define the url instead of the existing one.  We simply select “DataDirect Apache Hive JDBC Driver” instead of the existing Apache driver.

And that’s it, we can now enjoy all the new Big Data features in ODI 12c! A big thanks to David Allan and Denis Gray for their technical and licensing help. Stay tuned as I will soon publish a second blog post detailing some features.

Previewing Four Sessions at the Atlanta Rittman Mead BI Forum 2015

In a post earlier this week I previewed three sessions at the upcoming Brighton Rittman Mead BI Forum 2015; in this post I’m going to look at four particularly interesting sessions at the Atlanta Rittman Mead BI Forum 2015 event running the week after Brighton, on May 13th-15th 2015 at the Renaissance Atlanta Midtown Hotel, Atlanta GA. As well as an optional one-day masterclass on big data development by myself and Jordan Meyer on the 13th, the main event itself has keynotes and product update sessions from Oracle’s BI product management team, a data visualisation challenge and a guest talk by John Foreman, author of the book “Data Smart” and Chief Data Scientist at Mailchimp; in terms of the main sessions though there are four that I’m particularly interested in, starting with one by a speaker new to the BI Forum, Qualogy’s Hasso Schaap, who’ll be talking to us about their use of Oracle’s new BI Cloud Service in his session “Developing strategic analytics applications on OBICS PaaS”

NewImage

“In this session I’ll tell how we use the Oracle BI Cloud Service in our development plans for a strategic analytics application. Focussing on Strategic HR Planning there’s so much you can do with your data that we decided to put it in a packaged app. I will discuss the important parts of the development process and show how we fixed the issues we came up with. Developing in the BI Cloud is different and expectations are also different. 
As an example there’s the part of prediction. How do we predict based on data in the BI Cloud and what are other possibilities. With prediction we were able to tell our customers a different story. A story that was different than before using old-school tools and techniques. In this session I will uncover some of the most appreciated functionality and will happily elaborate on the story behind ‘The present, the future, development and scenario planning’.”

My second featured session is by someone very-well known to previous BI Forum attendees, and to the wider Oracle BI+DW community: Stewart Bryson. Stewart of course used to head-up Rittman Mead in the US and then went-on to become our first Chief Innovation Officer, before leaving to start his own company Red Pill Analytics with Kevin McGinley, another old friend of Rittman Mead and the BI Forum. We’re very pleased to have both Stewart and Kevin delivering sessions at the Atlanta BI Forum, and for Stewart’s session he’s talking about something very close to his heart – “Supercharging BI Delivery with Continuous Integration”:

NewImage

One of the things I’ve never understood about the lifecycle features in most BI tools is why the designers feel the need to roll their own source control and DevOps features. Instead of focusing on deeper integration with tools and processes that exist in the other 90% of development paradigms, BI vendors instead start with a clean palette and create something completely siloed and desperately alone. 
In this presentation, we’ll take a look at how some of these other development paradigms approach DevOps — paying perhaps the closest attention to the world of Java development and other JVM languages. We’ll see how approaches such as continuous integration and continuous delivery play a part in rapid, iterative delivery, and how we can apply some of those approaches to the world of OBIEE development.”

My third session is by another speaker new to the BI Forum, but someone who’s well-known in the BI and data warehousing world and who I met in-person for the first time at last year’s Oracle Openworld: Sumit Sarkar. Sumit works for Progress Software, makers of the DataDirect ODBC drivers that powers OBIEE’s connection to Hadoop, for example, as well as connectors to MongoDB, Salesforce, Oracle RightNow and Eloqua, and as he’ll explain in his session “Make sense of NoSQL data using OBIEE”, NoSQL databases : 

NewImage

“NoSQL databases have stormed the top 10 db-engines rankings with MongoDB at #4 and Cassandra at #8.  It’s inevitable that these NoSQL databases, storing unstructured data without a standard query language, will have BI requirements for unarmed OBIEE teams.  Not even a complete Oracle stack can save you with the release of Oracle NoSQL.This will be the first session of its kind to tackle standards based NoSQL connectivity.  
So join me at BI Forum ’15  to take control of NoSQL data with your RPD and expand big data skills and thought leadership within your organization.  Learn how organizations are using SQL access to NoSQL databases for integration across existing business intelligence platforms. We’ll talk about common challenges and gotchas that shops are facing when exposing unstructured NoSQL data to OBIEE.  It can get out of hand pretty quickly otherwise …”

My final selection is from CERN, the European Organization for Nuclear Research and home of course of the Large Hadron Collider (and who announced on April 1st the first unequivocal evidence for The Force, almost upstaging our announcement of Oracle E-Business Suite being ported to Hadoop and MongoDB). There’s several session at both the Brighton and Atlanta BI Forums on Oracle’s new Big Data Discovery tool, and in this session CERN’s Manuel Martin Marquez will be talking about their work in this area, in his session “Governed Information Discovery: Data-driven decisions for more efficient operations at CERN”

NewImage

“The European Centre for Nuclear Research, CERN, is running the world’s largest and more powerful particle accelerator complex in order to shed light on how the Universe works and which are its main building blocks.  CERN’s particle accelerators and detectors infrastructure is comprehensively heterogeneous and complex. A number of critical subsystems, which represent cutting-edge technology in several engineering fields, need to be considered: cryogenics, power converters, magnet protection, etc. The historical monitoring and control data derived from these systems has persisted mainly using Oracle database technologies, but also other sorts of data formats such as JSOM, XML and plain text files. All of these must be integrated and combined in order to provide a full picture and better understanding of the overall status of the accelerator complex.
Therefore, a key challenge is to facilitate easy access to, flexible interaction with, and dynamic visualization of heterogeneous data from different sources and domains.  In our session, we will share our experience with a potential solution for finding insights within our data, Oracle Endeca Data Discovery. In addition, we will feature practical examples relating to future possibilities for improving the control and monitoring of CERN’s accelerator complex, optimization results for accelerator operations and a demo of the implemented solution”

Full agenda details on the Atlanta Rittman Mead BI Forum 2015 can be found on the event homepage, along with details of the optional one-day masterclass on Delivering the Oracle Information Management and Big Data Reference Architecture, and our first-ever Data Visualisation Bake-Off, using the DonorsChoose.org dataset. Registration is now open and the event takes place between May 13th and 15th April 2015, at the Renaissance Atlanta Midtown Hotel, Atlanta GA.